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Bursting bubble aerosols
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We depict and analyse the complete evolution of an air bubble formed in a water
bulk, from the time it emerges at the liquid surface, up to its fragmentation into
dispersed drops. To this end, experiments describing the drainage of the bubble
cap film, its puncture and the resulting bursting dynamics determining the aerosol
formation are conducted on tapwater bubbles. We discover that the mechanism of
marginal pinching at the bubble foot and associated convection motions in the bubble
cap, known as marginal regeneration, both drive the bubble cap drainage rate, and
are responsible for its puncture. The resulting original film thickness h evolution
law in time, supplemented with considerations about the nucleation of holes piercing
the film together culminate in a determination of the cap film thickness at bursting
hb ∝ R2/L , where R is the bubble cap radius of curvature, and L a length which
we determine. Subsequent to a hole nucleation event, the cap bursting dynamics
conditions the resulting spray. The latter depends both on the bubble shape prescribed
by R/a, where a is the capillary length based on gravity, and on hb. The mean drop
size 〈d〉 ∼ R3/8 h5/8

b , the number of drops generated per bubble N ∼ (R/a)2 (R/hb)
7/8

and the drop size distribution P(d) are derived, comparing well with measurements.
Combined with known bubble production rates over the ocean, our findings offer an
adjustable parameter-free prediction for the aerosol flux and spray structure caused by
bubble bursting in this precise context.
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1. Introduction
The question of the aerosol flux from the Earth’s surface to the atmosphere has been

addressed since the work of Aitken (1881) on condensation nuclei. Among different
production mechanisms, those occurring at the sea surface are predominant (Coantic
1980; Andreas et al. 1995; O’Dowd & de Leeuw 2007), in particular those associated
with wave breaking at the coasts in the so-called ‘surf zone’. The water surface
agitation there induces various atomization processes (see e.g. figure 1), which also
contribute to the sea/atmosphere water vapour exchanges, and global equilibrium at the
Earth scale (Monahan & Dam 2001). For instance, sea spray evaporation is estimated
to exceed natural evaporation once the wind speed exceeds 15 m s−1 (Latham & Smith
1990; Andreas et al. 1995).
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FIGURE 1. Origins of the different kinds of sea spray droplets. The present study
concerns the ‘film droplets’ production mechanism. Adapted from figure 1 on page 5 of
Andreas et al. (1995).
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FIGURE 2. (a) Two bubbles of different sizes at the surface of a water bulk (R ' 0.25 and
3 mm respectively). (b) Schematic section of a millimetric bubble. The bubble cap is a film of
thickness h, extending on a sphere portion of radius R and half-angle θc and connected to the
bulk via the meniscus surrounding it.

Wave breaking produces a foam of bubbles, which eventually burst, projecting a
large collection of drops into the air. Two processes are involved depending on the
particular shape an air bubble adopts when it lies at the surface of a liquid bulk,
as schematized in figure 2. A first fragmentation process was identified by Jacobs
(1937) in the pinch-off of the well-known Worthington upward jet (Worthington &
Cole 1897) formed from the collapse of the cavity by the sudden pressure drop
following the bubble cap breakup. It concerns small bubbles, down to microns in size,
and never produces more than ten ‘jet drops’ per bubble (Blanchard 1963). A second
process, much more efficient and concerning millimetric bubbles was later identified
by Knelman, Dombrowski & Newitt (1954). It consists of the disintegration of the thin
liquid film separating the cavity from the atmosphere, the bubble cap, which produces
up to hundreds of ‘film drops’ per bubble (Blanchard & Sysdek 1988; Resch & Afeti
1991; Spiel 1998).
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FIGURE 3. Bubbles are generated by injecting pressurized air into a bent pipe. Different
bubbles sizes are obtained by changing the pipe outlet diameter and the air flow rate.

This paper is concerned with this latter mechanism. It aims to quantitatively estimate
the inherent aerosol production by studying all the intermediate steps contributing to
it. Our approach is to study isolated bubbles of cap radius R ranging from 100 µm to
1 cm, those corresponding to the film drop production range (see § 4) at the surface of
a tapwater bulk. Their behaviour is found to be very similar to that of bubbles formed
out of sea water (by contrast with soap bubbles where the presence of a large quantity
of surfactant drastically alters the behaviour). Every step of the bubble life essential
to understanding the cap disintegration is studied. We found no need to describe the
precise bubble initiation below the liquid surface since the subsequent bubble evolution
remained unchanged despite profound variations of formation mechanisms and depth
of initiation (see the experimental set-up we finally adopted in figure 3).

Bubbles burst by nucleating a hole in their cap. The bursting dynamics depends,
however, directly on the cap thickness hb at the moment the hole forms; § 2 describes
the bubble cap drainage and puncture. We observe that this problem can be split
into two parts: a deterministic film thinning due to the liquid drainage into its base
meniscus, and a hole nucleation event through the bubble cap which is stochastic and
is analysed accordingly.

Liquid film drainage has already been intensively studied for foams and their broad
applications. However the cap shape configuration of surface bubbles which imposes
a pressure 2σ/R in the liquid of the film is not always accounted for (σ stands
for the liquid surface tension). Even more important, most studies (Schwartz &
Roy 1999; Howell 1999; de Gennes 2001; Aradian, Raphaël & de Gennes 2001;
Breward & Howell 2002) use two-dimensional configurations implicitly assuming
a symmetry of revolution, or horizontal translation invariance. They certainly offer
a good description for soap films where large surface viscosities induced by large
surfactant concentrations rapidly damp all motion in the film plane, but they cannot
describe the drainage dynamics relevant for water bubbles where convection motions
play a first-order role, as we will show. The marginal pinching occurring at the bubble
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foot where the cap connects to its meniscus is indeed known to be unstable for low
surface viscosity (Bruinsma 1995). The resulting convection cell emission is called
marginal regeneration after Mysels, Shinoda & Frankel (1959). We develop in § 2.2 a
heuristic model where all those features are articulated together, providing a thickness
evolution law h agreeing quantitatively with the measurements.

The cap puncture mechanism is then considered. Puncture consists of nucleating a
large enough hole through the cap, an event requiring an activation energy σh2. It is
shown that for the range of thickness hb ∼ 100 nm–10 µm involved, neither thermal
fluctuations, nor marginal-regeneration-induced film turbulence can account for the
puncture. The detailed puncture mechanism remains unclear; we nevertheless develop
a model in § 3 based on the observation that puncture preferentially appears at the
bubble foot within the convection cells, which accounts for the very robust observation
that the cap mean thickness hb at the onset of bursting scales as

hb ' R2

L
(1.1)

as indicated by the measurements made by Spiel (1998) with seawater, and ours. We
give an interpretation of the mysterious length L .

The last step involved in the aerosol production is the cap disintegration. Although
its dynamics is fast, typically less than 1 ms, unambiguous direct visualization using
modern imagery (Photron APX) makes its study comparatively easier than that of
drainage or puncture. Note however that neat observations do not require such
elaborate apparatus: as early as in 1672, Robert Hooke noted that (citation reported by
Plateau 1873)

‘It is singular also that after that, when the bubble bursts, its rupture takes place with a
species of explosion, by dispersing its parts in a kind of dust or fog’.

Later, Marangoni & Stefanelli (1872) even managed to see liquid ligaments,
mediating the fragmentation into drops, by simply carefully watching a bursting
bubble lit by a spark. Finally, perennial visual evidence of the breakup scenario
has been available since the early age of cinematography from the stereoscopic
movies by Etienne Jules Marey (Bull 1904), depicting unambiguously the whole
sequence of the bursting of a soap bubble pierced by a bullet. In the context
of marine aerosol production however, these precious observations seem to have
been overlooked. As already mentioned, the group of Dombrowski identified the
film disintegration as a droplet source (Newitt, Dombrowski & Knelman 1954), but
together with Blanchard & Sysdek (1988), misunderstood its dynamics. The formation
of ligaments actually results from the inertial destabilization of the rim bordering the
opening hole, collecting the film liquid, as we show (see also Lhuissier & Villermaux
2009). Resch & Afeti (1991) obtained photographic evidence of this scenario but did
not identify it and focused on drop size distributions without explaining their origin.
Spiel (1998) was the first to propose a quantitative description of the average drop
size. But although he noticed that the rim undergoes a centripetal acceleration as
it recedes, he did not identified the Rayleigh–Taylor destabilization as the selection
mechanism. He predicted that the angle covered by recession on the bubble cap
before drop ejection occurs is independent of bubble size, in contradiction with our
observations and understanding of them, which in addition provide good predictions
for destabilization time, size of ligaments, number of droplets and droplets size
distributions (§ 4).
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In § 5, the results obtained on single bubbles are applied to the context of marine
aerosols. In situ bubble population measurements by Deane & Stokes (2002) are
used to estimate the net aerosol content due to film bubble disintegration. The
corresponding prediction is seen to compare well with field measurements by Wu
et al. (1984).

2. Drainage
A gas bubble at an interface can be schematically considered as a thin curved liquid

film, the cap, connected to the bulk via a meniscus and enclosing an air cavity (see
figure 2). In the same way, its lifetime can be seen as a relatively long, but variable
period when the cap bubble thins as the cavity is immobile, inevitably ended by cap
puncture. In this section we consider these successive steps. They result from the
impossibility of a static equilibrium, leading to the liquid film drainage into the bulk.

2.1. Bubble shape
The bubble shape directly influences the film drainage through both the film
orientation with respect to the direction of gravity, and capillary pressure induced by
the interface curvatures. It also determines the bursting dynamics via the cap extension
and curvature. The determination of this shape is thus mandatory for understanding the
whole bubble lifetime and it is our starting point.

The bubble shape is prescribed by the size of the bubble, say its cap radius of
curvature R, relative to the capillary length a = √σ/ρg, which determines whether
capillarity σ/R dominates gravity ρgR, where ρ is the liquid density. The shape can be
determined by assuming hydrostatic equilibrium in the bulk and in the meniscus and
obeying the Young–Laplace equation at each interface. As will be seen in § 2.2.1, the
film thickness h is nearly instantaneously small enough for its weight to be neglected.
In the same way, relative surface tension variations 1σ/σ , which are mandatory
for sustaining the bubble, are small enough for surface tension to be considered
as uniform. The weightless bubble cap thus adopts a hemispherical shape whose
extension is imposed by the air cavity volume and the conditions at the meniscus.
Figure 4 shows numerical bubble profiles obtained for bubbles of different relative
sizes R/a with the same approach as Toba (1959) (see appendix A). As one would
expect, small bubbles are found to be almost spherical and totally immersed in the
liquid whereas large ones float and adopt a hemispherical shape.

For R< a, the relative cap extension varies strongly with R. In the limit case R� a,
gravity plays no role and the bubble cavity is expected to be spherical and maintained
below the surface. Pressure jumps at the interfaces impose the cavity radius to be half
the cap radius R, because the cap is a film and has two interfaces while the cavity has
a single one. The resultant buoyancy

ρg
4π
3

(
R

2

)3

(2.1)

is therefore equilibrated by the surface tension vertical component σ sin θc applied on
the cap perimeter

σ sin θc × 2πR sin θc (2.2)

where θc is the half-cap-angle defining its extension, as sketched in figure 2. Thus θc is
written

lim
R/a→0

θc = R

2
√

3a
. (2.3)

Figure 4(b) shows that this approximation is valid up to surprisingly large bubble radii,
namely as large as R = 5a. This is precisely the range of bubble sizes we will be
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FIGURE 4. (Colour online available at journals.cambridge.org/flm) (a) Bubble shapes for
increasing radii R (not to scale). (b) Cap angle θc versus bubble radius R (•) obtained
by numerical integration of the Young–Laplace equation using Mathematica software (see
appendix A). Dashed lines (−−) show asymptotic behaviours defined in (2.3).

concerned with (see § 4). Therefore, in the following, if not otherwise mentioned, the
cap half-extension E = Rθc will be considered to be of order

E = Rθc ∼ R2

a
. (2.4)

2.2. Cap film drainage
When an air bubble arrives from the bulk at the surface of water, the liquid layer
separating it from the atmosphere emerges above the surface level to form the cap.
It then necessarily drains into the bulk. The driving effect of this drainage flow is
either the capillary pressure inside the cap 2σ/R, or the hydrostatic pressure ρgR
depending on the ratio R/a as discussed above. For the range of sizes R 6 5a that
we are concerned with, the capillary pressure is always comparable to, or dominates,
hydrostatic pressure. If the bubble exists at the surface for more than a fraction of
a second, gravity imposes that a vertical surface tension gradient is established to
sustain the liquid, and this is permitted by a concentration gradient of surfactants
(unavoidably present in tap- or seawater) along the bubble cap. Three successive stages
can then be distinguished (at least conceptually): a primary fast inertial drainage when
the flow in a film section is typically a plug flow, a subsequent drainage when the
surfactant monolayer stretches on the bubble cap and concentrates at its foot until the
necessary surface tension gradient is established (§ 2.2.1), and a last slow drainage
which involves both viscous and convection flows (§ 2.2.2).

2.2.1. Fast early drainage and surfactants
Initial free drainage begins during the emergence of the air cavity above the bulk

and proceeds until the surface tension gradient required to balance the cap liquid
weight is established. Most of the cap initial liquid is evacuated back to the bulk
within this stage which typically lasts a capillary emptying time (remember capillary
pressure dominates hydrostatic pressure)

√
ρRE2/σ , where ρ is the liquid density. For

R = a ' 2.7 mm in water, this time is of order 10−2 s and decreases strongly with R.
The remaining thickness at the end of this fast early drainage depends strongly on
water purity.

If water is pure, the liquid in the film is free to slip at the interface and drains
in a plug flow. The only slowing effect thus potentially resides in the film viscous

http://journals.cambridge.org/flm
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stretching but its characteristic time ηR/σ ∼ 10−4 s, where η is the liquid viscosity,
makes it ineffective even for centimetric water bubbles (note that this time scale
corresponds to the drainage time η/ρgR observed by Debrégeas, de Gennes &
Brochard-Wyart (1998) for ‘bare’ molten glass bubbles when gravity is the driving
force). Such pure water bubbles thus drain and burst almost immediately after reaching
the surface. This peculiar behaviour has been noticed by Newitt et al. (1954) and
precisely accounted for by Blanchard, Bilofsky & Bridgman (1972). It was also
observed in our experiments.

On the other hand, for the usual case of non-distilled water, bubbles can exist for
a time t longer than 1 s, as suggested by common observation with tapwater or any
kind of water found in nature – in rivers, oceans or rain puddles. The fundamental idea
is that this latter behaviour is by far the more common, either in nature or in man-
made processes, since an astonishingly small amount of surface-active components
is required to maintain the bubble integrity. Actually we were able to obtain lasting
bubbles in distilled water exposed for only a few seconds to the laboratory atmosphere.
The particularly high surface energy of water is thus crucial for the bubble lifetime
via its strong propensity to adsorb pollutants at its interface, a fact known long ago
(Hagen 1846). We are specifically concerned with bubbles formed out of such highly
diluted solutions. They represent an intermediary state between immediately bursting
pure liquid bubbles, and saturated soap bubbles lasting minutes or hours, which are
completely different both regarding their drainage dynamics, and puncture mechanism
(see § 3).

We thus consider bubbles whose liquid films are sandwiched between two mobile
monolayers of surfactants at each interface. In this condition, drainage remains free as
long as the momentum diffusion time across a film section h2/ν is short compared to
the capillary emptying time

√
ρRE2/σ . Equating the two characteristic times yields

the magnitude of the thickness hη at which the monolayers start to be stretched by the
interstitial flow:

hη ∼
(
η2a3

ρσ

)1/4(R

a

)5/4

∼ 10–100 µm. (2.5)

This is not necessarily the film thickness at the beginning of the viscous drainage that
we will discuss in § 2.2.2; surface tension gradients of the surface monolayers are also
to be considered.

Surface tension variations result from inhomogeneities in the surface concentration
c of impurities adsorbed at the interface. In the dilute limit we are considering, the
surface spreading pressure isotherm reduces to

σ0 − σ = kBTc (2.6)

where σ0 is the surface concentration of the pure solution, kB is the Boltzmann
constant and T is temperature. Impurities which are initially evenly distributed at the
water interface are dragged down during the transition between the inertial and the
viscous state by the downward film flow over the bubble cap. This effect is illustrated
in figure 5 where the liquid surface has been seeded with micrometric bubbles acting
roughly as passive surface tracers which are expelled radially as the bubble emerges,
leaving a ‘clean’ interface over the bubble cap.

The bubble apex surface concentration is thus lowered by the surface stretching,
concomitant with the film thinning, until the surface tension difference 1σ (between
the bubble apex and the bulk) required to maintain equilibrium is established. That
difference is the sum of two contributions. The first one, corresponding to the film
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FIGURE 5. Cleaning of the interface accompanying the emergence of an air bubble at the
bulk surface seen from above. The interface was previously seeded with homogeneously
spread small bubbles of diameters between 10 and 50 µm. The bubble cap radius is R' 5 mm,
and time between images is 14 ms.

liquid weight projection along the local film tangent direction, is ρghR(1− cos θc)/σ 6
Rh/a2. The second one, which is due to the shear stresses across the pinching region
that form at the bubble foot (described in § 2.2.3), is of order σh/R leading to

1σ

σ
∼ Rh

a2
+ h

R
. (2.7)

The thickness at the beginning of the viscous drainage can therefore be estimated if
the initial spreading pressure σ0 − σb is known, where σb is the bulk surface tension,
since it represents an upper bound for surface tension difference 1σ between any pair
of points at the liquid interface. Expressing that the film further thins by stretching the
surface monolayers until 1σ adapts to this maximal value, we have from (2.7) and
(2.6) a new expression for the thickness at the end of the free-fall drainage regime:

hσ ∼ a
σ0 − σb

σ0

(
a

R
+ R

a

)−1

. (2.8)

In all our experiments on bubble drainage and lifetime, we used the ‘same’ tapwater
for the bulk solution. Its surface tension at 20 ◦C was measured by the pendant drop
method yielding σb = 71.2 mN m−1 with a relative standard deviation of 0.6 % over 16
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drops. Comparison with tabulated values for pure water σ0 = 72.7 ± 0.05 mN m−1

(Lide 1999) gives an estimate of σ0 − σb ∼ 1 mN m−1� σ0.
This shows that for the bubbles we are concerned with, the limiting condition for

the thickness at the end of the free-fall drainage regime is h = hσ � hη. These values
for σ0 − σb and hσ also justify the assumptions made in § 2.1, namely that surface
tension is essentially uniform and that the cap liquid weight is negligible.

These values for σb also show that the surface properties of our tapwater are very
close to those of seawater. Indeed, although it is somewhat larger due to the presence
of dissolved salt, the surface tension of seawater is well known to be of the same
order as that of pure water (and thus of the same order as that of tapwater). Blanchard
(1963), p. 117, for instance mentions for North Atlantic seawater at 22 ◦C a value of
73.2 mN m−1. The corresponding capillary lengths can thus safely be considered as
essentially equal numerically.

For the more subtle question of the surface pressure which plays the first-order role
in the drainage dynamics, it also seems that tapwater can be considered as a very
good experimental model for seawater. The presence of surface-active components
in seawater is indeed ascertained (Jarvis et al. 1967). Moreover, its surface pressure
seems to depend only very weakly on the specific sea under consideration and has a
robust value of the order of 1 mN m−1 (Barger, Daniel & Garrett 1974).

These considerations justify that tapwater is a good experimental model for seawater
and that the conclusion drawn from our experiments may safely be extended to the
bubbles at the surface of the oceans.

2.2.2. Viscous drainage
Once the surface tension gradient supporting the cap liquid weight is set, the

drainage of the cap consists of two opposite fluxes. Interstitial liquid is flowing
downward to the bulk while surface components are being pushed upward as the liquid
weight to bear decreases. The extrapolated final state, in the absence of puncture, is a
vanishingly thin film covered by a uniform surface concentration.

The rate of drainage is not determined by the flow over the whole bubble cap
but is instead prescribed by the conditions at the foot of the bubble, where the
cap connects to the meniscus. Indeed, immediately after the formation of a bubble,
a two-dimensional convection motion develops over the cap. This motion, which is
generic to liquid films connected to a bulk or a frame, is called marginal regeneration
following Mysels et al. (1959)’s description of the phenomenon. It consists of the
periodic emission of regularly spaced plumes which form at the lower edge of the cap,
where it connects to the meniscus. Figure 6 shows a sequence of this phenomenon
observed on a flat water film connected to a bulk. It is evidenced by the interferences
fringes revealing iso-thickness lines. Once they have left the pinching zone, the thinner
plumes rise due to their positive buoyancy with respect to the surrounding thicker
portions of the film.

For convenience, marginal regeneration observations were mainly carried out at the
base of flat films since lighting and imaging are easier. However, it takes place in
exactly the same way on hemispherical bubbles as can be clearly seen on figure 7 or
figure 17. These two figures illustrate that the convection cells invade the whole cap
surface and thus cause an efficient two-dimensional turbulent mixing over the whole
liquid film. This leads to a very uniform thickness h of the film over all the cap
as suggested by the constancy of the opening Taylor–Culick velocity V = √2σ/ρh
(Taylor 1959; Culick 1960) of a hole growing in the cap (see § 4).
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FIGURE 6. Marginal regeneration resulting from the pinch-off line instability at the bottom
of a flat water film connected to a bulk (time increase from top left to bottom right). Fringes
are iso-thickness lines obtained under monochromatic lighting (sodium lamp at 589 nm). The
meniscus is the blurred band at the bottom of each picture. It is separated from the film by a
line of minimal thickness (along a vertical direction): the pinch-off line. Thin convection cells
develop by contorting the upper border of the pinch-off region. They then rise and separate
from the meniscus (see the typical velocity field they generate in figure 14). Image width is
4.3 mm and time between images is 5/100 s.
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FIGURE 7. View of the convections plumes and of the overall turbulent mixing under
monochromatic lighting (sodium lamp at 589 nm). Fringes are film iso-thickness lines. The
very bright portion at the bottom of the picture is the meniscus. Bubble radius is R= 5 mm.
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FIGURE 8. Comparison of the (inappropriate) drainage law (2.9) with experiments.

The mean film thickness h decreases as the film drains but does so more rapidly
than would be expected from a cap Poiseuille-flow-limited thinning. The pressure
within the cap 2σ/R is indeed uniform and in that context the viscous flow would be
driven by gravity only, leading to a cap thickness evolution law

h= F(θ)

√
4 η
ρgR t

, (2.9)

where F(θ) is a function that does not depend on the cap extension θc and is almost
uniform between F(θ = 0) = 1 and F(θ = π/2) ' 0.76 (see appendix B). The law
(2.9) relies on the assumption, obviously contradicted by the present observations,
that the cap thickness follows the axial symmetry of revolution of the bubble
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FIGURE 9. Sketch of the pinching region.

and, not surprisingly, it differs from the experimental measurements by strongly
underestimating the drainage rate of small bubbles of extension R θc� R (see figure 8).
This suggests that drainage is, rather, driven by convection motions and capillary
pressure 2σ/R.

2.2.3. Pinching and marginal regeneration
The standard Poiseuille-flow-limited thinning being not appropriate, we look for an

alternative mechanism, and focus on the conditions at the foot of the bubble, where
the film connects to the meniscus. The pressure within the liquid film is the capillary
pressure p = 2σ/R due to the cap curvature, where we have chosen the atmospheric
pressure pa = 0 as the reference pressure. At the meniscus, on the other hand, the
hydrostatic pressure is recovered, with magnitude very small by comparison with p,
and for the sake of clarity we will neglect it in the following (this pressure is −ρgzm,
where zm is the height of the top of the meniscus above the horizontal surface level,
and its magnitude ρgzm is always small compared to p− pa).

The pressure difference between the film and the meniscus generates a flow from the
former to the latter. This flow leads to the formation of a localized pinching separating
the two regions, as described in Aradian et al. (2001). This pinching is clearly seen
in figures 6 and 15, and is depicted in the sketch of figure 9. The pinched region
of the film is typically described by its length l and its minimal thickness δ at the
neck. Equilibrium requires that the curvature of the interfaces evolves in accordance
with the pressure drop accompanying the inner viscous flow. The order of magnitude
of l and δ can be determined by assuming that the axial symmetry of the bubble does
not modify singularly the mechanism of the pinching, as experiments suggest. We will
therefore only consider the interface curvature in the (er, ez)-plane. The pinching shape
is prescribed by the viscous flow across it. It connects the cap where thickness and
pressure are uniform because of the strong agitation, with the meniscus where viscous
effects are negligible because it is thick, and where hydrostatic equilibrium prevails.
Viscous dissipation is localized at the pinching and the flow of characteristic velocity u
there thus induces a pressure loss 2σ/R over its length l:

ηu

δ2
∼ σ

R l
. (2.10)

This pressure drop is accompanied by a regular surface curvature increase ensuring
the surface equilibrium condition. The matching of the pinching surface curvature with
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that of the bubble cap R imposes

h− δ
l2
∼ 1

R
(2.11)

and we finally obtain

Ca∼ δ2

R3/2 (h− δ)1/2 ∼
δ2

R3/2h1/2
(2.12)

where Ca = ηu/σ is a capillary number. As long as nothing disturbs the pinching, it
is expected to thin further as δ ∝ t−1/2, being concentrated in an ever shorter length
l ∝ t−1/4, due to the relaxation of the adjacent film portion (see Aradian et al. 2001).
However, this predicted evolution may be actually seen on ‘rigid’ films only where
the surfactant monolayers confer a ‘solid’ behaviour to the cap, and prevent any
destabilization of the pinching region.

On the contrary, in the more common case of a ‘liquid’ or mobile monolayer, as
for the present experiments, the marginal regeneration phenomenon resulting from
the destabilization of the pinching line is rapidly observed. This destabilization, of a
Bénard–Marangoni type, is driven by the surface tension difference across the pinching
region (see § 2.3). This difference, of order

1σ = 2δ
R
σ (2.13)

where 2σ/R is the pressure difference between the bubble cap and the meniscus base,
is a consequence of the tangential viscous stresses pulling the surfactant monolayers
towards the bulk. The larger the surface tension difference, the higher the propensity
to level it by convection motions. We therefore assume that at any moment, marginal
regeneration regulates the pinching thickness, with value corresponding to the critical
onset of the pinching destabilization, and that it remains always of the order the film
thickness, i.e.

δ . h. (2.14)

This crucial assumption agrees well with our experiments with tapwater and for which
the following observations were systematically made:

(a) the pinching forms within a hundredth of a second after the emergence of the
bubble;

(b) it lasts for the whole bubble lifetime;
(c) as seen in figures 6 and 15, it is continuously destabilized by convection cells,

consisting of thinner film portions (and presumably of smaller surface tension)
growing within the pinching region and then rising over the bubble cap;

(d) the pinching neck thickness δ is, from counting interference fringes, never smaller
than half the film thickness h.

This last observation, paraphrasing (2.14), is also consistent with Mysels et al.
(1959)’s remark (p. 35) that relative thickness differences are below 10 % and more
recently with experiments by Nierstrasz & Frens (1998) (with low-concentration
solutions of SDS and on a range of film thicknesses from 300 to 1500 nm) where a
constant thickness ratio of approximatively 0.8 between the recently formed rising film
portions (coming from the pinching region), and the rest of the film was systematically
found.
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The thickness of the bubble cap is uniform and its drainage is thus entirely
determined by the liquid flux across the pinching line. This flux, from the cap
to the meniscus, is the sum of the contributions of two mechanisms operating
concomitantly:

(a) the direct flow across the pinching zone with rate prescribed by viscous stresses
through the film thickness;

(b) the convective flow resulting from marginal regeneration motions along the cap
surface tangent direction, with net flow rate achieved by cyclically replacing thick
film portions by thinner ones.

The two mechanisms above are coupled. The liquid flux due to the convection motion
is slaved to that due to the direct flow and is always of the same order of magnitude,
an assumption leading to a good description of the experimental results over the whole
range of bubbles R 6 5a we have investigated.

With these considerations in mind, assumption (2.14) and the scaling laws (2.10),
(2.11) and (2.12), we have

l∼√R h (2.15)

and are now able to determine the drainage velocity

u= σ
η

(
h

R

)3/2

(2.16)

and from it the thinning law of a bubble. Mass conservation implies

ḣ∼−hu
P

S
'−hu

2
Rθc
∼−σa

η

h5/2

R7/2
(2.17)

where the perimeter P refers to that at the foot of the bubble and the surface S to
that of the cap, their ratio being equal to 2/Rθc within a few percent for any angle
0 6 θc 6 π/2. Integration of (2.17) yields the expected thinning law

h∼ a
(ηa

σ t

)2/3
(

R

a

)7/3

. (2.18)

It is compared to experiments in figure 10 (also compare with figure 8) with a
good agreement except for bubbles of radius R > 5a, as expected considering the
approximation (2.3) we used for the bubble geometry.

2.3. Cell size and frequency
2.3.1. Destabilization frequency

As explained in § 2.2.3, the neck in the pinching region at the bubble foot is liable
to be destabilized by a Bénard-Marangoni mechanism driven by the surface tension
gradient 1σ/l across the pinching. This gradient is equilibrated, in the mean, by
the tangential viscous stresses in the neck, leading the drainage velocity u in (2.16).
But since both the thickness h(s) and surface tension have a positive gradient along
the coordinate s tangent to the bubble profile, the equilibrium in (2.16) is obviously
unstable.

From the neck at s = 0 in the direction to the bubble pole, the thickness profile in
the pinching region is approximately (see figure 9)

h(s)' h

l
s. (2.19)
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FIGURE 10. Bubble cap thickness h (•) versus time t elapsed since the emergence of the
bubble at the bulk surface, and comparison with the thickness evolution law (2.18) (—).
Thickness h is measured from the hole receding velocity V = √2σ/ρh (see § 4) when the
bubble cap naturally punctures. (a) For bubbles of the same cap radius: R = 9 mm. (b) For
bubbles of various radii R ranging from 1 to 25 mm and times t ranging from 5× 10−2 to 30 s.
No measurement has been discarded. Measurements on bubbles so large that (2.3) and thus
(2.18), does not apply any more are identified by white-filled circles (◦).

In that reference frame, the velocity of the draining liquid is −u (directed towards the
liquid bulk). Denoting by ξ(t) the position of the neck along s, we see that from the
perturbed equilibrium in (2.16)

η

σ
(u+ ξ̇ )∼−

(
h− h(ξ)

R

)3/2

(2.20)

we have, from (2.19), the growth rate ξ̇ /ξ of the perturbed position of the neck. This
instability thus brings depleted portions of the film into the bubble cap at a frequency

f0 = ξ̇
ξ
∼ σ
η

h

R2
(2.21)

or, making use of (2.18)

f0 ∼ σ

ηa

(
R

a

)1/3(ηa

σ t

)2/3
. (2.22)

The above relationship, measured from the bubble shown in figure 11 to last more than
40 s, is quantitative up to proportionality factor of 6 (figure 12).

2.3.2. Destabilization size
The perturbations from the neck can grow provided they are not damped too

fast. When they escape from the pinching region, the dominant factor is no longer
the viscous stress across the film, but rather the friction between the moving cells
themselves. Therefore, if λ0 is the size of a structure escaping the pinching region with
amplitude ξ at velocity ξ̇ towards the bubble cap, the typical stress in the film plane
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(a)

(b)

(c)

FIGURE 11. Evolution of the marginal regeneration convection cell wavelength as time
elapses (sodium lamp at 589 nm). The bubble radius is R = 5.7 mm. From top to bottom
respectively 2, 19.5 and 39 s has elapsed after the bubble has emerged at the surface.

that the driving force 1σ has to overcome is η ξ̇/λ0, leading to the force balance

η ξ̇

λ0
h∼ 1σ

l
ξ (2.23)

which, with f0 = ξ̇ /ξ given in (2.21), and 1σ/h∼ σ/R, provides

λ0 ∼ R

(
h

R

)3/2

(2.24)

or, again making use of (2.18)

λ0

R
∼ ηa

σ t

(
R

a

)2

. (2.25)

It has to be stressed that, if (2.25) implies a dependence in time for λ0 (∝ t−1)
which compares well with the observations reported in figure 12, it anticipates an
absolute value for λ0 smaller than the wavelengths actually observed by several
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FIGURE 12. (a) Marginal regeneration convection cell emission period f−1
0 (•) measured

on the bubble with R = 5.7 mm shown on figure 11 versus time t spent since the bubble
formation. The line represents the law (2.22). (b) Evolution of the wavelength as defined on
figure 11 for the same bubble (•). The slope of the power law ∝ t−1 of (2.25) is shown for
comparison.

orders of magnitude. This is mostly due to the way we have represented the driving
force of the instability. Away from the pinching zone towards the bubble pole, the
surface tension gradient falls steeply from 1σ/l to the much smaller magnitude ρgh
(i.e. exactly stably counterbalanced by the film weight). The wavelength selection
is precisely operated in this crossover region, characterized by an effective tension
gradient intermediate between these two extremes, hence the major overestimate of
1σ in absolute value in the balance of (2.23), and the corresponding underestimate
of λ0.

3. Puncture
With a fair representation of the film thickness h evolution in time to hand, and

of the dynamics of the unstable structures at its foot, we now turn to the central
question of the film thickness hb at the onset of bursting. That question reduces to the
determination of the bubble lifetime at the interface. As seen from figure 10(a), where
time t is precisely the natural bubble lifetime for a selected set of identical bubbles
generated exactly in the same way in the same water, this lifetime is quite distributed.
The broad character of the lifetime distribution is general for films bursting naturally;
it is known for natural bubbles (see for example Zheng et al. 1983) and is reminiscent
of the stochastic nucleation process activated by rare events, an idea we will develop
further.

Nevertheless, distributed though the lifetime may be, its average strongly depends
on the bubble radius R, in a consistent and reproducible way. Bubbles burst by the
nucleation of a hole in the vicinity of their foot (see e.g. figures 15, 17 and 18
below), and recording the hole opening velocity gives access to the film thickness at
bursting hb. Figure 13 shows our measurements together with those of Spiel (1998),
both collapsing and suggesting that

hb ' R2

L
(3.1)

where the length L ' 20 m needs to be understood.
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FIGURE 13. Thickness hb at which bubbles spontaneously burst versus the cap radius R from
our measurements (•) and those of Spiel (1998) (◦). The line is hb = R2/L with L ' 20 m
(see (3.1)). Spiel’s values were originally expressed in terms of the air cavity equivalent
sphere radius; we converted them into R using the numerical bubble geometries.

3.1. The traditional picture of soap films: thermal activation
We have explained how the experimental law (3.1) does not apply to the extensively
studied case of bubbles made out of highly concentrated soap solutions. In that
context, marginal regeneration is known to be damped very rapidly due to the
high surface viscosity caused by the large surfactant concentration (Bruinsma 1995).
The drainage rate is therefore that of a Poiseuille flow over the whole bubble cap
described by (2.9). The film is slightly thinner at the cap pole and it typically
punctures there, when the film thickness h is of order a few tens of nanometres, say
typically 10 nm. For such small thickness, the film is sensitive to thermal fluctuations
(Bouchiat & Meunier 1971; Casteletto et al. 2003). Indeed, a hole through a film
of thickness h opens only if its diameter 2r is larger than h. For a smaller hole,
the in-plane curvature ∼ 1/r is larger than the curvature in the perpendicular plane
∼1/h and the hole closes. The nucleation of a hole across a film therefore requires
that the interfacial area be transitorily increased by a minimal quantity of order h2,
corresponding to an energy barrier σh2. The lifetime t of a film of area Σ subjected
to energy fluctuations of mean W can therefore be expressed according to the standard
Boltzmann–Kramers–Eyring estimate (Van Kampen 1981)

t ∼ 1
f

h2

Σ
exp

(
σh2

W

)
(3.2)

where f is a frequency factor expressing the number of trials per unit time and
per potential nucleation site, h2/Σ is the number of such nucleation sites, and
the exponential is an efficiency factor. Considering thermal fluctuations, the typical
energy is W = kBT ∼ 10−21 J and the frequency factor f is a molecular time of
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order kBT/h̄ ∼ 1012 s−1 (Maris 2006), where kB and h̄ are the Boltzmann and the
Planck constants respectively. A lifetime t, of say 1 s, thus corresponds to a film of
thickness h ∼ 1–10 nm consistent with the expected value for very thin films, such
as Newton black films (Casteletto et al. 2003). This scenario however predicts non-
physical lifetimes for films thicker than a few tens of nanometres at room temperatures
while bubble films are 1–10 microns thick. It in addition predicts a logarithmic
dependence of the bursting thickness hb on the bubble radius R, in clear contradiction
with the experimental trend in (3.1).

3.2. The role of marginal-regeneration-induced turbulence

There is another source of agitation within the bubble cap film, which does not have
a thermal origin, namely the turbulent motions generated by the marginal regeneration.
They were measured in suspended vertical water films, in order to make visualization
easier. By pulling a rigid frame out of a water bulk, we formed rectangular films
10 cm wide and 10 mm high (meniscus included) whose bottom side was connected
to the bulk via the meniscus, like that of a bubble, and with the lateral and top sides
connected to the frame. We focused on a narrow subpart of that horizontal width
only, far from both lateral edges in order to limit their influence. The surface of the
liquid bulk was initially seeded with micrometric particles, and the flow measurements
have been made by particle image velocimetry (Meunier & Leweke 2003). A typical
instantaneous velocity pattern is presented in figure 14. The mean kinetic energy of
the flow decreases exponentially in time suggesting that surface friction is responsible
for damping the motion (Xia, Shats & Falkovich 2009). Its maximal value is observed
once the initial motion due to the film formation has been dissipated and its magnitude
per unit film area is ρ〈u2 + w2〉 ∼ 1 J m−3. The film thickness measured at film
bursting, roughly 2.5 s after its formation, was h= 18 µm. Using this lower bound, the
typical kinetic energy within the volume h3 is of order W ∼ ρ〈u2 + w2〉h3 & 10−14 J.
This value should be compared with the required energy barrier σh2 ∼ 10−11 J. In this
first rough estimate, owing to thickness uncertainty and to a logarithmic pre-factor (see
(3.2)) of order ln(h2/Σ f )∼ ln(h3/Σ

√〈u2〉)∼−20, both energy scales do not seem to
be strongly incompatible, and one could conclude that turbulent agitation is likely to
provoke puncture.

However, a closer look discards marginal-regeneration-driven turbulence alone as
a strong enough phenomenon to puncture the film. One indeed needs to consider
velocity fluctuations at the scale of the hole nucleus h itself, rather than the large scale
fluctuations

√〈u2〉 alone: global translation will not alter the film, whereas localized
stretching will. This condition is much more restrictive since now in order to provoke
film puncture, velocity differences

√〈δu2(h)〉 at the scale h must be considered, and
should be of the same order as the film receding velocity V =√2σ/ρh ∼ 1–10 m s−1.
This condition is very far from being fulfilled in naturally agitated films, as we show
quantitatively in appendix C.

3.3. The role of convection cells

The detailed mechanism of thick film rupture thus remains unclear. However, several
experimental observations substantially constrain the possibilities:

(a) the film thickness at the bursting hb depends markedly on the bubble cap radius R
(equation (3.1));
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FIGURE 14. (a) Typical velocity field induced by marginal regeneration in a flat vertical
film formed by pulling a frame out of a water bulk (similar to that of figure 6). The bottom
brightest portion and the top portion, where velocities are horizontal, are the two meniscii
connecting the film to the bulk and to the top of the frame respectively. Image width is
10.8 mm and

√〈u2〉 = 7.2 cm s−1. Velocities are obtained by particle image velocimetry; only
one out of four velocity vectors is plotted to make visualization easier and statistics are
exclusively computed on the velocity field contained in the white frame which corresponds to
the film portion. (b) Mean kinetic energy 〈u2 + w2〉 over the film versus time t elapsed since
film formation.

(b) this thickness hb is independent of the precise content of the solution (as long
as large soap concentrations are not involved) in the sense that our measurements
with tapwater superimpose with those of Spiel (1998) using seawater (figure 13);

(c) most important, and by contrast with soap bubbles where puncture occurs at the
cap pole, tapwater bubbles preferentially puncture in the vicinity of the cap foot,
i.e. close to the meniscus that connects it to the bulk, in the unstable region
covered with the convection cells described in § 2.3. Among 25 observed bubbles
of cap radius R = 5 mm, puncture occurred 22 times between θ = 25◦ and the
bubble foot in θc = 30◦. In other words, almost 90 % of nucleation events occurred
over less than 30 % of the whole cap surface: that which is the closest to the
bubble foot, as seen in figures 15 and 17;

(d) the puncture preferentially occurs at the centre of the unstable convection cells
(figure 15), and the hole opening velocity V is larger than any other velocity in
the bubble.

The dynamics of the marginal regeneration, which has enabled an appropriate
description of the bubble cap thinning, and which is responsible for the bubble foot
agitation, is thus seemingly also at the root of the bubble bursting. We develop below
arguments which do not explain why the film punctures, but which appropriately
describe how, explaining in particular the structure of (3.1).

New cells are injected at the bubble foot every period f−1
0 . The evidence listed above

suggest that puncture will most certainly occur within a cell, at its centre, but that this
process is extremely inefficient: only about one out of a thousand or ten thousands
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FIGURE 15. Spontaneous bursting at the foot of a flat water film (interference fringes
visualized by a monomode argon laser at 488 nm). Nucleation is seen to occur around a
convection cell: the paradigm situation in the bursting of bubbles. Image height is 3 mm and
time lapse between the two images is 1/3000 s. The film receding velocity is V = 2.8 m s−1

corresponding to a thickness h= 20 µm.

cells will puncture, leading to the bubble burst. We call

ε = O(10−4–10−3) (3.3)

the efficiency of one cell puncture (independent of time) so that εf0δt is the probability
that one cell has punctured within a time interval δt. There are, at the base perimeter
P ∼ R2/a of a bubble, P/λ0 cells on average at a given time. The probability p(t)δt
that puncture occurs within δt on the bubble is thus extensive to both the efficiency
factor ε and the number of cells (like in (3.2), the cells are assumed to be independent
and therefore to contribute in an additive fashion to the bursting probability) present at
a given time

p(t)δt ∼ ε P

λ0
f0 δt. (3.4)

Conversely, 1− p(t)δt is the probability that no cell has punctured the bubble within δt,
so that the probability Q(t) that the bubble has not burst at time t is

Q(t)=
t/δt′∏

t′/δt′=0

[1− p(t′)δt′] −→δt′→0 exp
(
−
∫ t

0
p(t′) dt′

)
. (3.5)

If q(t) is the distribution of the bubble lifetime, it follows that

q(t)=−∂tQ(t)= p(t) exp
(
−
∫ t

0
p(t′) dt′

)
. (3.6)

Given the scaling laws for f0 and λ0 in (2.22) and (2.25), the bursting probability per
unit time p(t) is written as a weakly increasing function of time

p(t)= 4
3

t1/3

τ
4/3
0

(3.7)

with

τ0 = (4/3)
3/4

ε3/4

ηa

σ

(
R

a

)1/2

(3.8)
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FIGURE 16. Mean bubble lifetime distribution q(t), averaged from the lifetime distributions
of bubbles ranging from 1.2 to 7.4 mm in diameter, adapted from figures 5, 6 and 7 in Zheng,
Klemas & Hsu (1983) and compared to (3.9) (the line).

so that

q(t)= 4
3

t1/3

τ
4/3
0

exp

(
−
(

t

τ0

)4/3
)

(3.9)

which presents an algebraic increase at small time (∝ t1/3), and a faster than
exponential fall off at large times (identical to that of Q(t)), consistently with the
distributions reported in Zheng et al. (1983), as seen in figure 16. The mean bubble
lifetime, or bursting time, which we call tb, is

tb =
∫ ∞

0
t q(t) dt =

∫ ∞
0

Q(t) dt (3.10)

that is

tb = 0(7/4) τ0 ≈ 0.92 τ0. (3.11)

The bursting time is dimensionally set by the capillary viscous time ηa/σ (of the order
of 10−5 s for water), and is larger by several orders of magnitude owing to the factor
ε−3/4, reaching up to seconds. It is proportional to the square root of the bubble size,
in agreement with our observations and those in Zheng et al. (1983) where the bubble
mean lifetime is seen to increase with R for small bubbles. From (2.18), one finally
obtains the (mean) bubble cap thickness at the bursting time as

hb ∼ aε1/2

(
R

a

)2

= R2

L
(3.12)

with the length L solely function of the capillary length scale, and differing from it
by a very large amount depending on the puncture efficiency factor ε

L ∼ a

ε1/2
. (3.13)

As seen in figure 13, this law accounts very well for our, and Spiel (1998)’s,
experimental measurements.
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FIGURE 17. Spontaneous bursting of a bubble at the surface of a water bulk. Convection
cells can be seen all over the cap via the light refraction induced by the thickness modulations.
R= 10 mm, h= 3.1 µm and time between images is 1 ms.

4. Fragmentation dynamics
The detailed study of the bubble cap drainage and its puncture culminates in the

scaling law (3.12) linking the two length scales characterizing a bubble, on average,
namely the thickness of its cap h ≡ hb and its radius R, at the time it bursts. We now
turn to the sequence of events occurring after a hole has punctuated the bubble cap,
aiming to understand the products of the bursting, that is the subsequent drops, and
their size distribution.
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(a)

(b)

FIGURE 18. Bursting of two bubbles of comparable radii R and distinct thicknesses h. (a)
R = 14 mm, h = 36 µm and time between images is 2.5 ms. (b) R = 11.5 mm, h = 1.2 µm
and time between images is 0.67 ms.

4.1. Mechanisms and mean drop size

Once a hole nucleates through the bubble cap, the resulting fragmentation dynamics is
very fast compared to the slow drainage dynamics described before. This initial hole
extends circularly, driven by surface tension, at the constant Taylor–Culick velocity
V = √2σ/ρh (Culick 1960) and is bordered by a rim collecting the liquid film.
The constant velocity V is reached within a capillary time based on h, which is
short compared to the following destabilization mechanisms. The rim receding motion
follows the curved bubble cap (the validity of this assertion is discussed further) and
thus imposes a centripetal acceleration

γ = V2

R
(4.1)

to the rim. The latter thus suffers an inertial destabilization of a Rayleigh–Taylor type,
which leads to the formation of regularly spaced ligaments as figures 17 and 18 show.
Remarkably, the instability wavelength λ is the geometrical mean of the two length
scales of the problem R and h (Lhuissier & Villermaux 2009) and the instability
growth time τ is the capillary time based on that combined length

λ∼
√

σ

ργ
∼√Rh, (4.2a)

τ ∼
(
σ

ργ 3

)1/4

∼
√
ρ (Rh)3/2

σ
, (4.2b)

relationships which are both consistent with experiments, as seen in figure 19.
Ligaments spaced by λ are then stretched out by centrifugation, and are soon

resolved into disjointed droplets by a Plateau–Rayleigh destabilization. The capillary
time associated with this ultimate fragmentation being short compared to τ , the time
t1st for the first drops to be ejected is proportional to τ and indeed, we observe that

t1st ' 3 τ (4.3)

as seen in figure 19. Note that this inviscid theory applies to water. Viscous liquids
present a much slower destabilization, since both Rayleigh–Taylor and capillary
instabilities are slowed down by viscosity (see e.g. Bird et al. 2010 for a study of
that limit).
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FIGURE 19. (a) Ligament spacing λ for bubbles in tapwater (•) and soap saturated solution
(◦) (a solution of tapwater and ‘Dreft’ by Procter & Gamble above the critical micelle
concentration having a surface tension of 25 mN m−1) versus the expected scale law of (4.2a),
up to a factor 3. (b) Delay t1st before first drop is released versus τ defined in (4.2b).

The droplet mean diameter 〈d〉 in the resulting spray is set by the ligament diameter
when drop pinch-off occurs, as is known from the capillary instability of moderately
corrugated threads (Eggers & Villermaux 2008). The ligament diameter is observed to
remain roughly constant from the onset of their formation to their fragmentation since
their stretching by centrifugation is compensated by the film flow permanently feeding
them. The average drop diameter 〈d〉 is thus directly proportional to the rim diameter
at the onset of ligament formation, that is to say after a rim recession time τ and then

〈d〉 ∼ √Vτh∼ R3/8 h5/8. (4.4)

Figure 20 shows a reasonable agreement with that prediction, with a slight departure
for the smallest bubbles.

4.2. Range of relevant bubble sizes and number of drops per bubble
The number of drops N produced at each bursting event depends on the bubble shape,
that is on R/a (§ 2). As long as R is large enough the ejection time t1st is short
compared to the rim recession time over the half-cap Rθc/V ∼ R2/aV . Using the
expressions for V and hb ' R2/L , one obtains the limiting bubble radius for film drop
production:

Ri ' (2× 35 × a/L )
1/3

a' 0.4 a. (4.5)

Bubbles smaller than this critical value are expected to produce no film drops, and the
jet drop mechanism prevails in that case. The above order of magnitude Ri ' 1.1 mm
is consistent with previous experimental estimates by Resch & Afeti (1991) and Spiel
(1998) who found Ri ' 0.6 and 1.2 mm respectively for bubbles in seawater.

At the other extreme, the film drop production mechanism is also limited for large
bubbles since they deflate before the cap recession is completed, and rim instability
initiated. An estimation of the bubble deflation time τdef can be made for large bubbles
assuming for simplicity that the air cavity remains a half-ball with volume 2πR (t)3 /3
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FIGURE 20. (a) Mean drop size 〈d〉 versus prediction of (4.4). (b) Number N of drops
produced per bubble versus prediction of (4.11). The line is y= 102x.

during collapse, where R(t) is now the decreasing radius of the bubble since puncture.
The pressure inside the bubble 4σ/R(t) drives a potential air flow from the bubble
cavity to the outer atmosphere with velocity

√
2σ/ρaR(t), where ρa is the constant

air density. The hole in the cap through which the air escapes has a current section
π (Vt)2. By conservation of the air volume, we have

d
dt

R3 =−3

√
2σ
ρaR

(Vt)2 (4.6)

giving

R(t)= R(0)

[
1−

(
t

τdef

)3
]2/7

(4.7)

where

τdef =
(

6
7

)1/3 R(0)
V

(
ρaR(0)
ρ h

)1/6

. (4.8)

The radius shrinks to zero in finite time (see Dupré 1869, p. 353, for the similar
problem of the soap bubble emptying through a straw). Figure 21 shows the evolution
of the cap radius R(t) of a large bursting bubble during collapse, compared with the
law expected from (4.7) showing that τdef indeed gives an accurate approximation
of the experimental deflation time. Note that the influence of deflation is in fact
complex, since it first increases the cap curvature at its apex, thus enhancing the rim
centrifugation. However, since the bubble meniscus position is unchanged during rim
recession, the cap flattens at larger times and centrifugation is inhibited. This deflation
effect leads to an upper cut-off radius Rs for film drop production, defined according to
Rsθc/V ' τdef , that is

Rs '
(

28 × 35

72

ρa

ρ

L

a

)1/7

a' 3.8 a. (4.9)
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FIGURE 21. Bubble radius R(t) (•) versus time t since puncture. The line is the best fit by
the evolution law (4.7). The experimental deflation time is thus found to be approximately
1.6 times the characteristic time τdef defined in (4.7) (R(0) = 7.7 mm,V = 2.85 m s−1 and
τdef = 2.2 ms). Inset: bubble cap profiles. The red parts show the portion of each profile
that was used for the determination of R. Radii have been measured until half-cap recession.
Missing dots and profiles around t/τdef = 1 correspond to not readable profiles hidden by the
ligaments.

For bubbles with radii between Ri and Rs, the corresponding number of drops formed
by burst N can be estimated assuming that the whole liquid cap, of volume

Ω ∼ R4h

a2
, (4.10)

is fragmented into droplets of diameter 〈d〉. As will be seen in § 5, because the
ligaments are weakly corrugated, the dispersion of drop sizes for a single bursting
event is quite small, and 〈d3〉 is of the same order as 〈d〉3. Therefore, N can be written

N ∼ Ω

〈d〉3 ∼
(

R

a

)2(R

h

)7/8

. (4.11)

This formula overestimates the number of drops actually observed in our experiments
(figure 20b) because the assumption that the whole volume Ω is converted into drops
is obviously a simplification. It however describes well the dependence of N on the
cap radius R (if we except the particularly small bubbles on the left-hand side of
the graphics for which only a small portion of the cap volume Ω is expected to be
fragmented according to the discussion leading to the definition of Ri in (4.5)), which
is enough for our purpose since we will only need to consider relative productions in
the range Ri 6 R 6 Rs in what follows. It is also worth noting that considering hb ∝ R2
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provides

N ∝ R9/8 (4.12)

from (4.11), showing that big bubbles produce more drops than smaller ones do.
This trend is also consistent with previous observations in seawater which, however,
present some discrepancies. Resch & Afeti (1991), using their own measurements and
those of Blanchard & Sysdek (1988) that they reinterpreted, found an empirical power
law N ∝ R1.5−1.8 while more recent measurements by Spiel (1998) show a weaker
dependence on R, closer to N ' bR + c with a cut-off at Ri = −c/b ' 1.2 mm as
already mentioned.

4.3. Culick’s law on a curved film

The rim receding velocity V = √2σ/ρh that we have used for computing the rim
centripetal acceleration is strictly valid for a planar film where the motion is a
translation along the film uniform tangential direction et . It, however, remains valid
for a film of constant radius of curvature R under a condition we discuss below, and
which turns out to be fulfilled for the bubbles we are concerned with.

When the velocity of the rim is not constant in direction, its rate of momentum
variation induced by the surface tension force operating tangent to the film splits into
two components:

(a) that due to the liquid at rest in the film being collected into the rim and
accelerated to the rim tangential velocity V , i.e. ρhV2 et ;

(b) that due to the liquid already in the rim and undergoing the centripetal
acceleration −(mV2/R) en, where m is the current rim linear mass and en is
the outer unit vector normal to the bubble.

The latter is of order of the former and needs to be considered only when

m > ρhR, (4.13)

that is to say when the rim has receded over a distance larger than R without
ejecting any drops. That was observed only for bubbles of radius R larger than a
few centimetres. For smaller bubbles, liquid is ejected from the rim all along the
recession path and V is well represented by the planar prediction. The observed fact
that the rim trajectory coincides with the bubble cap position is also consistent.

5. Aerosol production
5.1. Single bubble spray

The interpretation of the global spray production at the ocean surface requires
knowledge of the drop size content from a single bursting bubble. We focused on
relatively big bubbles with radius R = 12 mm formed at the top of a 20 mm diameter
glass tube filled with water. This large radius was chosen for measurement precision,
but the resulting fragmentation properties, in particular the shape of the drop size
distribution p(d), are generic for all bubble radii. Bubbles were rapidly inflated and
their bursting was initiated by positioning a hydrophobic sand-coated needle at a
fixed height above the tube. This allowed us to burst bubbles of the same radii and
thicknesses and to accumulate precise statistics. This also allowed us to determine the
puncture location on the bubble cap and have all the ligament fragments in the camera
focus plane at the same time. Drop diameters d were measured on images taken late
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FIGURE 22. Example of a 210 drop population generated by a single bubble. The largest
drops have a diameter of 500 µm.
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FIGURE 23. Distribution of drop diameters d resulting from the provoked bursting of 12
identical bubbles representing almost 2000 drops. (a) Original data (note that the size of a
pixel corresponds to 32 µm and thus the relative weight of the two first bins is not necessarily
relevant). (b) Normalized drop size distribution (dots) and fit by a Gamma distribution (see
(5.1)) of order n = 11. Only black points (•) corresponding to d > 5 px are used for the
normalization and the fit.

enough after ligament breakup for all drops to have relaxed to a nearly spherical shape.
An example is shown in figure 22.

The drop size distribution measured on a set of 12 identical bubbles is presented
in figure 23. With a resolution scale of 30 µm, and with largest drops of 500 µm, the
distribution presents two characteristic parts: a roughly uniform fraction of small sizes,
and a bell-shaped fraction with steep tail for larger sizes. This latter fraction is very
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FIGURE 24. (a) Fragmentation dynamics of a centrifuged ligament resulting from the
bursting of a bubble. (b) Global experimental drop size distribution P(d) estimated by
combination of Wu, Murray & Lai (1984)’s (•) and Preobrazhenskii (1973)’s (◦) in-situ
measurements. They are compared to (5.4) with Ri = 0.4a and Rs = 3.8a (—). Note that Wu
et al. (1984)’s and Preobrazhenskii (1973)’s are partial distributions that are not ‘vertically
positioned’ relative to each other; we combined them so that they coincide in their common
drop size range. The compound distribution is not normalized on our graph in order to permit
comparison with (5.4).

well described by a Gamma distribution

p

(
x= d

〈d〉
)
= nn

0(n)
xn−1e−nx (5.1)

where 0(n) = ∫∞0 tn−1e−t dt is the Gamma function. This size distribution is the
signature of ligament-mediated fragmentation (Villermaux, Marmottant & Duplat
2004), those being, as in all atomization processes, the ultimate objects forming the
drops, as figure 24 depicts. Small initial surface corrugations lead to smooth ligaments,
and therefore to a quite narrow drop size distribution around the mean (we find n= 11
in figure 23, whereas a pure decaying exponential would have n= 1, and a Dirac delta
function would correspond to n→∞ (see Villermaux 2007)).

The uniform portion of the size distribution for small d is a consequence of a
secondary fragmentation process due to transverse impacts between adjacent ligaments.
These impacts occur as the rim hole starts to shrink, when the rim has receded from
more than half the initial sphere, and ligaments move closer to each other. This effect
only concerns large bubbles since it imposes θc > π/2 (see figure 4). We thus suspect
that this small-d fraction of the measured distribution is due to the large bubble radius
we have chosen, and that the drop size distribution for smaller bubbles will be close
to a pure Gamma distribution. Besides, the observations of Spiel (1998) made from
bubble radii ranging from 1.5 to 6 mm indicate a clear decrease of the drop size
distributions p(d) for small d.

5.2. Global spray

With a drainage model and a description of the fragmentation dynamics providing
closed relationships linking hb, N and p(d/〈d〉(R)) to the bubble radius R we are now
able to infer a global spray distribution P(d) directly from knowledge of the bubble
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size distribution at the ocean surface q(R) as

P(d)= 1
N0

∫ Rs

Ri

q(R)N(R)

〈d〉(R) p(d/〈d〉(R)) dR, (5.2)

simply expressing that the overall spray results from a weighted sum of the
contributions from all bubbles between Ri and Rs. We indeed consider that the real
phenomenon in nature involving many bubbles with different sizes, such as those
produced in a foam by wave breaking in the ocean for instance, can be interpreted
from the scenario we have established for a single isolated bubble, in a linearly
additive fashion, and that no new effect arise from the proximity of the bubbles in the
foam. Nearby bubbles may coalesce, and we argue in appendix D that the coalescence
event just delays the onset of bubble bursting, without altering its features compared to
those of an isolated bubble. We also assume in writing (5.2) that the droplets ejected
from a given bubble in the bubble foam assembly will not interfere with the natural
aging (drainage, spontaneous puncture) process intrinsic to a single bubble, or at least
that these interferences, if they happen, are negligible.

The integration domain in (5.2) is bounded on both sides (§ 4). The lower bound
Ri ' 0.4 a corresponds to a bubble cap extension θc so small that drop ejection cannot
occur before rim recession ends, whereas the upper bound Rs ' 3.8 a corresponds to
bubbles so large that their deflation is faster than the rim recession as we discussed in
§ 4.2.

Realistic bubble size distributions q(R) at the sea surface must be estimated from
separate measurements, such as those of Deane & Stokes (2002) for wave breaking.
In the 1–10 mm bubble radius range corresponding to the film drop production range,
these authors find that

q(R)∝ R−10/3, (5.3)

a law apparently insensitive to the precise way wave breaking has been initiated, and
holding both for ocean and artificial laboratory waves. Thus, q(R),N and 〈d〉 all follow
power laws in R.

Defining the exponents α and β such that q(R)N(R) ∝ R−α and 〈d〉(R) ∝ Rβ , and
introducing ζ = (α − 1)/β, the overall compound distribution P(d) is written from
(5.1) and (5.2)

P(d)= 1
N ′0

d−1−ζ
[
0inc

(
n+ ζ, n d

〈d〉s

)
− 0inc

(
n+ ζ, n d

〈d〉i

)]
(5.4)

where 0inc(n, d̃) = ∫∞d̃ tn−1e−t dt is the so-called incomplete Gamma function and
〈d〉i and 〈d〉s correspond to the mean drop size from bubbles of radius Ri and Rs

respectively as defined in (4.4). According to (4.4), (4.11) and the measurements of
Deane & Stokes (2002), we have ζ = 3/4 leading to a distribution which behaves like

P(d)∝ d−(1+ζ ) = d−7/4 (5.5)

between the two cut-offs imposed by Ri and Rs. The compound distribution P(d) is
shown in figure 24(b) to superimpose extremely well on field measurements made by
Preobrazhenskii (1973) and Wu et al. (1984).

6. Conclusion
We have described the complete sequence of events of the life and bursting of

a bubble at the surface of a water pool, and we have underlined the relevance of
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this process for understanding how aerosols are produced at the surface of the sea.
This study has revealed a rich phenomenology, some of its aspects being completely
understood, some other remaining obscure.

(a) We have considered bubbles whose radius ranges from a fraction, to a couple, of
capillary length scales a ' 2.7 mm. A ‘small’ amount of surfactant on the bubble
cap has large consequences: the lifetime of the bubble jumps from hundredths of a
second (for pure water) to several seconds, up to tens of seconds.

(b) The marginal pinching at the bubble foot, and the inherent marginal regeneration
phenomenon, are crucial to understand the thinning law of the bubble cap. The
exchanges of the interstitial fluid in the cap with the liquid bulk are set by
the pinch-off thickness which is slaved to that of the cap by its recurrent
destabilization.

(c) The bubbles burst by nucleating a hole precisely in this marginal regeneration
region (not at their pole, as opposed to soap bubbles); the holes nucleate at
the centre of the convection cells, which therefore also appear as the objects
responsible for the bubble bursting.

(d) Neither thermally activated noise, nor turbulence in the marginal regeneration
region are strong enough to puncture the film. The energy levels associated with
these effects are orders of magnitude below that required to puncture a hole.

(e) The film is typically thick at breakup: it is one to ten microns thick. Attractive
Van der Waals forces are unlikely to operate in this range.

(f ) Evaporation has not been considered. However, in exactly the same conditions
as those of our bubble experiments, a layer of tapwater evaporates at a velocity
of a hundredth of a micron per second (see figure 25), a rate which, owing to
the typical bubble lifetime (seconds) and cap thickness (several microns), suggests
that evaporation is a subdominant effect. Moreover, no definite trend has been
observed in the bubble mean lifetime when the liquid bulk temperature was varied
in the range 4–80 ◦C.

(g) The ultimate mechanism puncturing the film remains a mystery, and this is
certainly a topic for future research. However, assuming that the phenomenon
occurs in the marginal regeneration convection cells with a frequency associated
with their rate of production, times a very small efficiency factor, accounts for
the features of the bubble, in particular its mean lifetime and consequently the
thickness of its cap, at bursting.

(h) The subsequent sequence of events, namely the hole opening velocity, its rim
destabilization by a Rayleigh–Taylor mechanism, the formation of ligaments,
their capillary breakup, and finally the distribution of the resulting fragment
droplets within the range of bubble radii liable to produce fragments are clearly
demonstrated, measured, and understood.

(i) Remarkably, a linear superposition of the contribution of a single bubble to the
overall spray, in proportion to its relative occurrence at the surface of the sea
given its radius represents very accurately the observed sea spray distribution.

Paraphrasing Michael Faraday’s Chemical History of a Candle (Faraday 1861), we
could conclude that: There is no better, there is no more open door by which you can
enter into the study of natural philosophy than by considering the physical phenomena
of a bubble (originally: candle).

There is indeed a large amount of Fluid Mechanics at play in the phenomena ruling
the life, death, and descendants of a bubble.



Bursting bubble aerosols 37

H
(m

m
)

5.950

5.955

5.960

5.965

t (s)
0 500 1000 1500

FIGURE 25. Evolution in time of the thickness H of a tapwater layer evaporating in
the standard conditions of the laboratory (quiescent air at temperature 20.5 ◦C, water
is thermalized, air hygrometry is 65% of the saturation). The measurement is made by
weighting the liquid contained in a circular Petri dish 95 mm in diameter and 12.5 mm deep,
with a 1 mg precision balance. The line is the best linear fit giving an evaporation velocity of
11.7 nm s−1.
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Appendix A. Bubble geometry
Surface bubbles are shaped by both surface tension and gravity. As justified at the

end of § 2.2.1, relative variations in surface tension are small and the cap thickness is
rapidly so small that they can be neglected in the following derivation of the bubble
shape. Following the same approach as Toba (1959), the bubble interface profile is
separated into three portions:

(a) the cavity interface up to the cap;
(b) the external meniscus from the cap to the surface reference level far away;
(c) the cap, both interfaces of which are considered to lie on the same line.

Those three portions meet at the a priori unknown point corresponding to θ = θc. A
shooting method in which θc is set arbitrarily and then progressively adjusted to satisfy
a matching condition is therefore required. The set of equations with their matching
condition has to be solved for every bubble size prescribed by the parameter R0/a,
where R0 is the cavity curvature radius at its bottom (in θ = π) and a is the yet to be
defined capillary length.

Once the parameter R0/a has been chosen, the profile is built in three successive
steps. The cavity profile {r, z} (where the origin of heights z = 0 is taken at the cavity
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bottom, i.e. where θ = π) is first obtained by numerically solving

∂(r sin θ)
∂r

= r

(
2
R0
+ z

a2

)
for θ ∈ [θc,π]

with initial condition {r, z, θ} = {0, 0,π}

 (A 1)

that equilibrates the cavity pressure with hydrostatic and capillary ones. The profile is
integrated from π to the expected value θc.

The assumptions of weightless cap and uniform surface tension impose the cap
curvatures to be uniform and its profile thus becomes a simple arc of circle. Only one
cap is compatible with a given θc which has a radius

R= rc

sin θc
(A 2)

and {0, zc − R cos θc} as its centre; where rc and zc are the values in θc from integration
of (A 1). This sets the cavity over-pressure 4σ/R with respect to the atmosphere
(neglecting the air density) and with it the surface of the undisturbed level at infinity

z∞
a2
= 4 sin θc

rc
− 2

R0
. (A 3)

The external meniscus profile is finally determined by numerically integrating

z′′(
1+ z′2

)3/2 +
z′

r
(
1+ z′2

)1/2 =
z− z∞

a2
for r ∈ [rc,∞[

with the initial condition {r, z, z′} = {rc, zc, tan θc}.

 (A 4)

The surface level z(r→∞) is compared to the expected value z∞ it has to match, and
depending on the agreement, a new loop with an adjusted value of θc is performed or
not. Once the desired precision is reached, the latest value of θc is used, and the profile
is obtained by combination of the three sub-portions as shown in figures 2 and 4.

Appendix B. Bubble cap Poiseuille flow
Consider a curved thin liquid film of viscosity η and density ρ adopting the shape

of a cap symmetric with respect to the ascendant vertical direction ez. The film is
sandwiched between two mobile layers of a rigid surfactant. We assume that this
symmetry extends to the film thickness h whose typical value is small compared with
the cap radius R and we therefore seek one-dimensional solutions h(θ, t) for the film
thinning, where θ is the angular coordinate whose origin is at the north pole along ez.
For a no-slip condition imposed at the surface by the immobile layers, the viscous flow
can be described by the lubrication approximation

q=− (∇p+ f ) h3

12 η
,

∂h

∂t
=−∇q (B 1)

where q is the flow per unit length through a normal section of the film, the pressure
gradient ∇p is zero all over the cap and the external tangential force f · eθ acting
on the film reduces here to the gravity body force −ρgh ez · eθ = −ρgh sin(θ). Non-
dimensionalizing length by a typical initial thickness h0 and times by 12ηR/ρgh2

0, one
obtains

∂h

∂t
=− 1

sin θ
∂(h3sin2θ)

∂θ
. (B 2)
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Seeking solutions of the form h(θ, t)= F(θ)× G(t) yields

Ġ

G3
=− (F

3sin2θ)
′

F sin θ
=A (B 3)

where the prime and overdot stand for derivation with respect to θ and t, respectively,
and A is a constant. Integration of (B 3) gives

F(θ)=

(
−2A

3

∫ θ

0
sin1/3θ dθ

)1/2

sin2/3θ
. (B 4)

With the initial condition h(0, 0) = h0 and considering F(0) = G(0) = 1, one has
A =−2 and therefore

G(t)= (1+ 4 t)−1/2. (B 5)

Finally, the film thickness h(θ, t) is written in dimensional variables

h(θ, t)=

(
4/3

∫ θ

0
sin1/3θ dθ

)1/2

sin2/3θ

1(
1
h2

0

+ ρgt

3ηR

)1/2 . (B 6)

This thinning law, which amounts to h ∼√4ηR/ρg t once the initial condition h0 has
been forgotten, i.e. after a characteristic time ηR/ρgh2

0, does not depend on the cap
extension θc (see figure 2). It is prescribed by the conditions at the pole and thus
solely depends on the radius of curvature R. The function F(θ) is plotted in figure 26
where it is seen to be almost uniform over the whole cap. Its maximum value at the
cap equator is only 2π1/4√0(2/3)/0(7/6)' 1.31 times that at the pole.

Note that solution (B 6) has been derived and used by Couder et al. (2005) to
describe the air film upward drainage of a surface anti-bubble whose shape is that of
an upside-down classical surface bubble.

Appendix C. Turbulence features
As mentioned in § 3.2, a global translation of the film, whose intensity is measured

by
√〈u2〉, is not likely to induce thickness modulations leading to film rupture. On the

contrary, localized stretching, if it is intense enough at the scale of the film thickness h
itself, will. This condition is, however, much more restrictive. We measured velocity
increments δu = u(r) − u(r + δr) for various increment sizes in the horizontal, and
vertical directions δr = (δx, δz) using the velocity fields studied in § 3.2. Distribution
functions of the horizontal velocity component increments in the horizontal direction
δu = u(x) − u(x + δx) and their second moment 〈δu2〉 are plotted in figure 27 for
various values of δx.

For two-dimensional turbulence, where enstrophy 〈(∇ × u)2〉 is, together with
kinetic energy 〈u2〉, a conserved quantity in the inertial range, one expects that
the flow for scales smaller than the injection scale is represented by the enstrophy
direct cascade (Kraichnan 1967); it has been observed in soap films (Kellay, Wu &
Goldburg 1995). For a stationary enstrophy injection rate β, the energy spectrum for
wavenumber k is thus E(k)∼ β2/3k−3 or equivalently

〈δu2〉 ∼ β2/3δr2 (C 1)
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FIGURE 26. Thickness h ∝ F(θ) (—) and flow rate q ∝ F (θ)3 sin θ (−−) dependence on
the angular coordinate θ at any time t. Values are divided by the corresponding values at the
equator, at θ = π/2.
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FIGURE 27. (a) Probability distribution function of horizontal velocities u = u · ex and of
horizontal–horizontal velocity increments δux(δx) = u(x) − u(x + δx) accumulated over 100
velocity fields. Increment distances are δx = 1, 2, 5, 10 and 20l0, where l0 = 225 µm is the
field spatial resolution (half that appearing on figure 14). (b) Second moments of velocity
increment distributions 〈δu2

x〉 and 〈δu2
z 〉. The dashed line is the law 〈δu2〉 ∝ δr2 of (C 1).

like for a passive scalar in a direct smooth cascade (the thickness field in a soap film
has also been suggested to follow Batchelor scaling (Amarouchene & Kellay 2004)).
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FIGURE 28. Evolution of two bubbles with radii R = 5.6 mm coalescing. Comparatively to
the volume of both caps, a large volume of water is contained in the meniscus border initially
joining them. As coalescence initiates, this volume is pushed up into the newly formed cap
and is rapidly spread over it by convection. This results in a new bubble which has no memory
of the history of the two separated bubbles that have merged. A time interval of 17, 50, 117
and 250 ms has respectively elapsed from the top image to the bottom.
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In figure 27, the velocity increments are roughly following a square δx2 law
(although the best fit is shallower, suggesting that the displayed range of scales is
not far from the inverse energy cascade range). The corresponding enstrophy transfer
rate is β ∼ 105 s−3 and the associated dissipation scale

r ∼ (ν2/β2/3)
1/4 ∼ 100 µm. (C 2)

This scale is somewhat larger than the film thickness h, but even at that overestimated
scale, 〈δu (r)2〉 is found to be of order

〈δu (r)2〉 ∼ β2/3r2 ∼ 10−5 m2 s−2, (C 3)

very far away in order of magnitude from the square of the typical Culick film
opening velocity

V2 = 2σ/ρh∼ 1–10 m2 s−2 (C 4)

that sets the velocity fluctuation threshold to overcome stabilization by surface tension.
This is consistent with the observation in figure 15 that the film opens immediately
after a hole nucleation event on a basically stationary velocity field (and associated
thickness field).

In conclusion, turbulent motions induced by marginal regeneration alone are
definitely too weak to provoke film rupture.

Appendix D. Coalescence
This appendix shows, by way of figure 28, how the coalescence of two nearby

bubbles at the pool surface resets their individual drainage past history. Indeed, one
sees that a large fraction of liquid in the menisci at the foot of the bubbles is re-
injected into the coalesced bubble cap, hence producing a ‘young’ bubble, irrespective
of the age of the initial separated bubbles. This legitimates the assumption made in
§ 5.2 that the evolution of an isolated bubble is relevant for describing the spray
structure, including for an assembly of interacting bubbles.
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